

CLASS **10**

MOCK PAPER

MATHEMATICS [SA1]

Time : 3 Hrs.

MM : 90

GENERAL INSTRUCTIONS

- I. All questions are compulsory.
- II. The question paper consists of 34 questions divided into four sections A, B, C and D.
- **III.** Section A contains 8 questions of 1 mark each, which are multiple choice type questions, Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each, Section D contains 10 questions of 4 marks each.
- **IV.** There is no overall choice in the paper. However, internal choice is provided in one question of 2 marks, three questions of 3 marks and two questions of 4 marks.

(a) 2:3

(c) 8:27

V. Use of calculator is not permitted.

SECTION – A

DIRECTIONS : *Question numbers 1 to 8 carry 1 mark each. For each questions 1 to 8, four alternative choices have been provided of which only one is correct. You have to select the correct choice.*

1. Which of the following is irrational?

(a)
$$\frac{22}{7}$$
 (b) 3.141592

- (d) 0.12322322232223.....
- 2. If the zeroes of the quadratic polynomial $x^2 + (a+1)x + b$ are 2 and -3, then (a) a = -7, b = -1 (b) a = 5, b = -1

(c)
$$a=2, b=6$$
 (d) $a=0, b=-6$

3. If
$$\triangle ABC \sim \triangle PQR$$
 with $BC = 8$ cm and $QR = 12$ cm,
then $\frac{area(\triangle ABC)}{area(\triangle POR)}$ is equal to

4. $\sin (45^\circ + \theta) - \cos (45^\circ - \theta)$ is equal to (b) 0 (a) $2\cos\theta$ (c) $2\sin\theta$ (d) 1 5. By Euclid's division lemma x = qy + r, x > y, the value of q and r for x = 27 and y = 5 are: (a) q=5, r=3(b) q=6, r=3(c) q=5, r=2(d) cannot be determined The value of $\frac{\cos(90^\circ - \theta)\cos\theta}{\cos\theta}$ -1 is 6. $\tan \theta$ (a) $-\sin^2\theta$ (b) $-\csc^2\theta$ (c) $-\cos^2\theta$ (d) $-\cot \theta$ If $b \tan \theta = a$, the value of $\frac{a \sin \theta - b \cos \theta}{b \cos \theta}$ 7. (b) $\frac{a+b}{a^2+b^2}$ (a) $\frac{a-b}{a^2+b^2}$

(b) 4:9

(d) none of these

- (c) $\frac{a^2 + b^2}{a^2 b^2}$ (d) $\frac{a^2 b^2}{a^2 + b^2}$
- 8. A set of numbers consists of three 4's, five 5's, six 6's, eight 8's and seven 10's. The mode of this set of numbers is
 (a) 6 (b) 7
 - (c) 8 (d) 10

SECTION – B

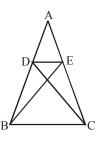
DIRECTIONS : *Question number 9 to 14 carry 2 marks each.*

- 9. To find the H.C.F. of 1071 and 1029, using Euclid's division algorithm.
- 10. If $x = \frac{4}{3}$ is a root of the polynomial $f(x) = 6x^3 - 11x^2 + kx - 20$ then find the value of k. Or

Find the zeroes of the polynomial $\sqrt{3}x^2 + 10x + 7\sqrt{3}$.

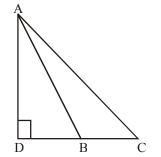
- 11. Given $\triangle ABC \sim \triangle DEF$. If AB = 2DE and area of $\triangle ABC$ is 56 cm². find the area of $\triangle DEF$.
- **12.** If A, B, C are interior angles of $\triangle ABC$, show

that: $\cos\left(\frac{B+C}{2}\right) = \sin\frac{A}{2}$


- 13. Draw the graphs of the pair of linear equations x-y+2=0 and 4x-y-4=0. Calculate the area of the triangle formed by the lines so drawn and the x-axis.
- **14.** Construct the cumulative frequency distribution of the following distribution

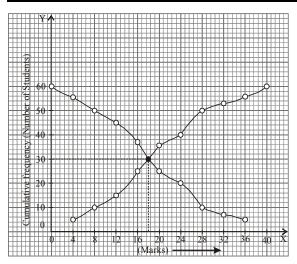
Class	12.5 - 17.5	17.5 - 22.5	22.5 - 27.5	27.5 - 32.5	32.5 - 37.5
Frequency	2	22	19	14	13

SECTION – C


DIRECTIONS : *Question number 15 to 24 carry 3 marks each.*

15. In adjoining figure if $\triangle ABE \cong \triangle ACD$, prove that $\triangle ADE \sim \triangle ABC$

In the given figure, $\angle ADC = 90^\circ$. Prove that $AC^2 = AB^2 + BC^2 + 2BC.BD$.


- 16. Three wheels can complete respectively 60, 36, 24 revolutions per minute. There is a red spot on each wheel that touches the ground at time zero. After how much time, all these spots will simultaneously touch the ground again?
- 17. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and product of its zeroes as 2, -7, -14 respectively.
 Or

On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4 respectively. Find g(x).

18. If $\sin\theta = \frac{3}{5}$, prove that $(\tan \theta + \sec \theta)^2 = 4$.

19. Prove that:
$$\sqrt{\frac{\sec \theta - \tan \theta}{\sec \theta + \tan \theta}} = \frac{1 - \sin \theta}{\cos \theta}$$

- 20. Solve for x and y: $\frac{3}{x} + \frac{4}{y} = 1$; $\frac{4}{x} + \frac{2}{y} = \frac{11}{12}$
- **21.** What is the median of the data using the graph of less than ogive and more than ogive?

22. In the given figure *ABC* and *DBC* are two triangles on the same base *BC*. If *AD* intersects *BC* at *O*.

Prove that
$$\frac{ar(\Delta ABC)}{ar(\Delta DBC)} = \frac{AO}{DO}$$

23. Evaluate the following:

 $\frac{\sin 15^\circ \cos 75^\circ + \cos 15^\circ \sin 75^\circ}{\tan 30^\circ \tan 55^\circ \tan 35^\circ \tan 85^\circ}$

24. The arithmetic mean of the following frequency distribution is 25. Determine the value of p.

Class	0 - 10	10 - 20	20-30	30 - 40	40 - 50
Frequency	5	18	15	р	6

Or

Find the mean of the following data, using step-deviation method.

Class interval	0–20	20–40	40–60	60–80	80–100	100–120
Frequency	7	8	12	10	8	5

SECTION – D

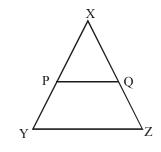
DIRECTIONS : *Question number 25 to 34 carry 4 marks each.*

- **25.** Prove that $\sqrt{2}$ is irrational.
- 26. Jamila sold a table and a chair for ₹ 1050, thereby making a profit of 10% on the table and 25% on the chair. If she had taken a profit of 25% on the table and 10% on the chair she would have got

₹ 1065. Find the cost price of each.

27	Drovo that	tan 0	cotθ	$-\sec\theta\csc\theta\pm1$
27.	27. Prove that	$1 - \cot \theta$	$1 - \tan \theta$	= Sec 0.coSec0 + 1

28. A survey regarding the heights (in cm) of 51 girls of Class X of a school was conducted and the following data was obtained :


Height (in cm)	Number of girls	
Less than 140	4	
Less than 145	11	
Less than 150	29	
Less than 155	40	
Less than 160	46	
Less than 165	51	

- Find the median height and interpret the result.
- 29. A criminal start driving a stolen car from a point (8, -8) along the road given by 2x + y = 8 and second criminal start running on a motor cycle from a point (6, 3) along the road given by 3x 2y = 12. If both the criminals are moving in such directions on the above mentioned road such that they meet at a point, then locate the point graphically where the police party should stay to arrest both the criminals will you advice some more police on the y-axis to arrest the criminals?
- **30.** Through the mid-point M of the side CD of a parallelogram ABCD, the line BM is drawn intersecting AC at L and AD produced at E. Prove that EL = 2BL.

Or

In figure, $\frac{XP}{PY} = \frac{XQ}{QZ} = 3$, if the area of ΔXYZ is

 32 cm^2 , then find the area of the quadrilateral PYZQ.

31. If $\sec \theta = x + \frac{1}{4x}$, prove that : $\sec \theta + \tan \theta = 2x \text{ or, } \frac{1}{2x}$ Or If $\frac{\cos \alpha}{\cos \beta} = m \text{ and } \frac{\cos \alpha}{\sin \beta} = n$ show that $(m^2 + n^2) \cos^2 \beta = n^2$

- **32.** Prove that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
- 33. Find all the zero(es) of $2x^4 3x^3 3x^2 + 6x 2$, if you know that two of its zero(es) are $\sqrt{2}$ and $-\sqrt{2}$.

34. Find the mean marks (average marks) obtained by a student from the following

Marks	Number of students
0 and above	80
10 and above	77
20 and above	72
30 and above	65
40 and above	55
50 and above	43
60 and above	28
70 and above	16
80 and above	10
90 and above	8
100 and above	0

HINTS & SOLUTIONS

SECTION – A

- (d) The number ²²/₇ is rational 3.141592 is also rational since the number is terminating decimal. 2.78181818.... is also rational since the number is non-terminating but repeating decimal. (½ mark) 0.123223222322223...... is irrational since the number is neither terminating nor repeating decimal. (½ mark)
 (d) Sum of zeroes = 2-3 = -1 ∴ -1 (a+1) = -1
- 2. (d) Sum of zeroes =2-3=-1 : -1 (a+1) =-1 $\Rightarrow a+1=1 \Rightarrow a=0$ ($\frac{1}{2}$ mark) Product of zeroes =-6=b : b=-6($\frac{1}{2}$ mark)

3. (b) We have,
$$\Delta ABC \sim \Delta PQR$$

$$\therefore \quad \frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \frac{BC^2}{QR^2} \qquad (\frac{1}{2} \text{ mark})$$

$$\frac{8^2}{12^2} = \frac{64}{144} = \frac{4}{9} = 4:9$$
 (½ mark)

- 4. **(b)** $\cos (45^\circ \theta) = \cos (90^\circ 45^\circ \theta)$ = $\cos (90^\circ - (45^\circ + \theta) = \sin (45^\circ + \theta)$ (½ mark)
 - $\therefore \quad \text{Given expression} \\ = \sin (45^\circ + \theta) \sin (45^\circ + \theta) = 0 (\frac{1}{2} \text{ mark}) \\ \text{(c)} \quad x = qy + r \implies 27 = 5 \times 5 + 2 \implies q = 5, r = 2 \\ \end{cases}$
- 5. (c) $x = qy + r \Rightarrow 27 = 5 \times 5 + 2 \Rightarrow q = 5, r = 2$ (1 mark) $\cos(90^\circ - \theta)\cos\theta$

6. (a)
$$\frac{\cos(90^{-2}-\theta)\cos\theta}{\tan\theta} - 1$$
$$= \frac{\sin\theta.\cos\theta}{\sin\theta/\cos\theta} - 1$$
 (½ mark)
$$= \cos^{2}\theta - 1$$
$$= -(1 - \cos^{2}\theta)$$
$$= -\sin^{2}\theta$$
 (½ mark)

7. **(d)**
$$\tan \theta = \frac{a}{b}$$

$$\frac{a \sin \theta - b \cos \theta}{a \sin \theta + b \cos \theta} = \frac{a \tan \theta - b}{a \tan \theta + b} = \frac{a^2 - b^2}{a^2 + b^2}$$
(1 mark)

8. (c) Mode of the data is 8 as it is repeated maximum number of times.

SECTION – B

DIRECTIONS : *Question number 9 to 14 carry 2 marks each.*

9. Since, 1071 > 1029, we apply the Euclid's division lemma to 1071 and 1029, we get $1071 = 1029 \times 1 + 42$ (½ mark) since, remainder $42 \neq 0$ so again applying division lemma in 1029 and 42, we get $1029 = 42 \times 24 + 21$ again $21 \neq 0$ (½ mark) Applying Euclid's Lemma again in 42 and 21, we get $42 = 21 \times 2 + 0$ (½ mark) Since, remainder is zero so H.C.F. is 21. (½ mark) 10. $f(x) = 6x^3 - 11x^2 + kx - 20$

$$f\left(\frac{4}{3}\right) = 6\left(\frac{4}{3}\right)^3 - 11\left(\frac{4}{3}\right)^2 + k\left(\frac{4}{3}\right) - 20 = 0$$
(½ mark)

$$\Rightarrow 6.\frac{64}{27} - 11.\frac{16}{9} + \frac{4k}{3} - 20 = 0$$
 (½ mark)

$$\Rightarrow 128 - 176 + 12k - 180 = 0 \qquad (\frac{1}{2} \text{ mark})$$

$$\Rightarrow 12k + 128 - 356 = 0 \Rightarrow 12k = 228 \Rightarrow k = 19$$

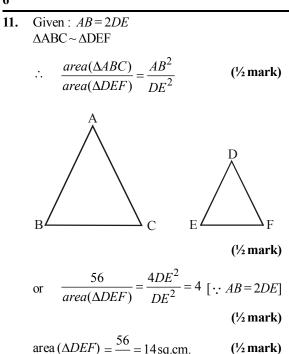
($\frac{1}{2} \text{ mark}$)

We have

$$f(x) = \sqrt{3}x^{2} + 10x + 7\sqrt{3}$$

= $\sqrt{3}x^{2} + 3x + 7x + 7\sqrt{3}$
= $\sqrt{3}x(x + \sqrt{3}) + 7(x + \sqrt{3})$
= $(\sqrt{3}x + 7)(x + \sqrt{3})$ (½ mark)

Or


The zeroes of $f(x) = \sqrt{3x^2 + 10x + 7\sqrt{3}}$ are given by f(x) = 0

$$(\sqrt{3}x+7)(x+\sqrt{3}) = 0$$

 $\sqrt{3}x+7 = 0$ or $x+\sqrt{3} = 0$ (1/2 mark)

 $x = -\frac{7}{\sqrt{3}}$ or $x = -\sqrt{3}$ (½ mark)

Hence, zeroes of $\sqrt{3}x^2 + 10x + 7\sqrt{3}$

are
$$n = -\sqrt{3}$$
 and $n = \frac{-7}{\sqrt{3}}$ (1/2 mark)

area
$$(\Delta DEF) = \frac{36}{4} = 14$$
 sq.cm. (½ mark)

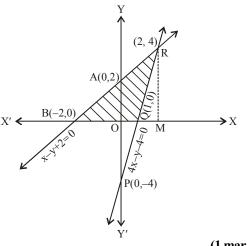
12. In
$$\triangle ABC$$
, $A + B + C = 180^{\circ}$ (½ mark)
 $\Rightarrow B + C = 180^{\circ} - A$

$$\Rightarrow \quad \frac{B+C}{2} = \frac{180^\circ - A}{2} \qquad (\frac{1}{2} \text{ mark})$$

$$\Rightarrow \quad \frac{B+C}{2} = 90^{\circ} - \frac{A}{2} \qquad (\frac{1}{2} \text{ mark})$$

$$\Rightarrow \quad \cos\frac{B+C}{2} = \cos\left(90^\circ - \frac{A}{2}\right) = \sin\frac{A}{2}.$$

(1/2 mark)


13. For drawing the graphs of the given equations, we find two solutions of each of the equations, which are given in Table

Table

x:	0	-2
$y = \mathbf{x} + 2$	2	0
<i>x</i> :	0	1
y = 4x - 4	-4	0
		(1/

(½ mark)

Plot the points A(0, 2), B(-2, 0), P(0, -4) and Q(1, 0) on the graph paper, and join the points to form the lines AB and PQ as shown in figure

(1 mark)

We observe that there is a point R(2, 4) common to both the lines AB and PQ. The triangle formed by these lines and the x-axis is BQR. The vertices of this triangle are B(-2, 0), Q(1, 0) and R(2, 4). We know that;

Area of triangle = $\frac{1}{2} \times \text{Base} \times \text{Altitude}$ Here, Base = BQ = BO + OQ = 2 + 1 = 3 units. Altitude = RM = Ordinate of R = 4 units.

So, area of
$$\triangle BQR = \frac{1}{2} \times 3 \times 4 = 6$$
 sq. units

(1/2 mark)

14. The required cumulative frequency distribution of the given distribution is given below:

Class	Frequency	Cumulative frequency
12.5 - 17.5	2	2
17.5 - 22.5	22	24
22.5 - 27.5	19	43
27.5 - 32.5	14	57
32.5 - 37.5	13	70

(2 marks)

SECTION - C

DIRECTIONS : *Question number 15 to 24 carry 3 marks each.*

15.	We are given that $ABE \cong \Delta ACD$	
	Therefore, $AB = AC$ (CPCT)	(1)
	and $AE = AD$ (CPCT)	(2)
		(½ mark)

7

In other words 1st, 2nd and 3rd wheel take 1, $\frac{5}{3}$

and $\frac{5}{2}$ seconds respectively to complete one revolution. (1/2 mark)

L.C.M of 1,
$$\frac{5}{3}$$
 and $\frac{5}{2} = \frac{\text{L.C.M. of } 1, 5, 5}{\text{H.C.F. of } 1, 3, 2} = 5$

(1/2 mark)

Hence, after every 5 seconds the red spot of all the three wheels touch the ground. (1/2 mark) 17. Let the cubic polynomial be, $ax^3 + bx^2 + cx + d$ and let is zeroes be α , β , γ (1/2 mark) Given, $\alpha + \beta + \gamma = 2$, $\alpha\beta + \beta\gamma + \gamma\alpha = -7$, $\alpha\beta\gamma = -14$ (¹/2 mark)

$$\therefore \quad ax^3 + bx^2 + cx + d = K(x - \alpha) (x - \beta) (x - \gamma)$$
$$= K [x^3 - (\alpha + \beta + \gamma) x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha) x - \alpha\beta\gamma]$$

 $= K[x^3 - 2x^2 - 7x + 14]$ (1 mark) For different real values of *K*, we can have different cubics all having the sum, sum of the product of its zeroes taken two at a time and product of its zeroes as 2, -7, -14 respectively. (1 mark)

Here
$$p(x) = x^3 - 3x^2 + x + 2$$
, $g(x) = ?$
 $q(x) = (x-2)$ and $r(x) = -2x + 4$ (1/2 mark)
By Division Algorithm, we have,
 $p(x) = g(x)$. $q(x) + r(x) \Rightarrow p(x) - r(x) = g(x)$. $q(x)$
(1/2 mark)

$$\Rightarrow g(x) = \frac{p(x) - r(x)}{q(x)}$$
 (½ mark)

$$=\frac{(x^3-3x^2+x+2)-(-2x+4)}{(x-2)}$$
 (¹/₂ mark)

$$\Rightarrow g(x) = \frac{x^3 - 3x^2 + 3x - 2}{x - 2}$$

$$\Rightarrow g(x) = x^2 - x + 1$$
 (1/2 mar

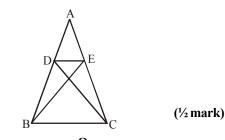
rk)

$$\begin{array}{r} x^{2} - x + 1 \\ x - 2 \overline{\smash{\big)} \begin{array}{c} x^{3} - 3x^{2} + 3x - 2 \\ x^{3} - 2x^{2} \\ \hline \\ - + \end{array}} \\ \hline \\ \hline \\ \hline \\ - x^{2} + 3x - 2 \\ \hline \\ \hline \\ \hline \\ - x^{2} + 3x - 2 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ x - 2 \\ \hline \\ \hline \\ \hline \\ x - 2 \\ \hline \\ \hline \\ \hline \\ z ero \end{array}}$$

(1/2 mark)

18.
$$(\tan \theta + \sec \theta)^2 = \left(\frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta}\right)^2 = \left(\frac{1 + \sin \theta}{\cos \theta}\right)^2$$

(1 mark)


$$\therefore \quad \frac{AB}{AD} = \frac{AC}{AE} \qquad [From (1) and (2)]$$
(½ mark)

i.e.,
$$\frac{AB}{AC} = \frac{AD}{AE}$$
 ...(3)

(½ mark) Now in $\triangle ADE$, $\angle A$ (i.e., $\angle DAE$) is included between sides AD and AE and in $\triangle ABC$. $\angle A$ (i.e., $\angle BAC$) is included between sides AB and AC and $\angle DAE = \angle BAC$ (Common angles) (1/2 mark)

Further
$$\frac{AB}{AC} = \frac{AD}{AE}$$
 [From (3)]
(¹/₂ mark)

$$\therefore \Delta ADE \sim \Delta ABC \qquad (SAS similarity)$$

In
$$\triangle ADC$$
, $\angle D = 90^{\circ}$
We have,
 $AC^2 = AD^2 + DC^2$... [By Pythagoras theorem]
 $AD^2 = AC^2 - DC^2$... (1) (½ mark)
In $\triangle ADB$, $\angle D = 90^{\circ}$
We have,
 $AB^2 = AD^2 + DB^2$ [By Pythagoras theorem]
 $AB^2 = (AC^2 - DC^2) + DB^2$ [Using 1] (½ mark)
 $AC^2 = AB^2 + (DC^2 - DB^2)$
 $= AB^2 + (DC - DB) (DC + DB)$ (½ mark)
 $\left[\because a^2 - b^2 = (a - b)(a + b)\right]$
 $= AB^2 + [DB + (DB + BC)]$
 $[(DC - (DC - BC)]$
 $(\% mark)$
 $AC^2 = AB^2 + 2DB + BC) BC$
 $AC^2 = AB^2 + 2DB - BC + BC^2$ (½ mark)
 $AC^2 = AB^2 + BC^2 + 2BC - BD$ [$\because BD = DB$]
Hence proved. (½ mark)
1st wheel makes 1 revolutions per sec
 $(\% mark)$

(½ mark) 3rd wheel makes $\frac{4}{10}$ revolutions per sec (1/2 mark)

16.

$$= \frac{(1+\sin\theta)^2}{\cos^2\theta} = \frac{(1+\sin\theta)^2}{1-\sin^2\theta}$$
 (1 mark)
$$= \frac{\left(1+\frac{3}{5}\right)^2}{1-\left(\frac{3}{5}\right)^2} = \frac{\left(\frac{64}{25}\right)}{\left(\frac{16}{25}\right)} = \frac{64}{16} = 4.$$
 (1 mark)

19. We have

LHS =
$$\sqrt{\frac{\sec \theta - \tan \theta}{\sec \theta + \tan \theta}}$$

= $\sqrt{\frac{\frac{1}{\cos \theta} - \frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta}}}$ (½ mark)

$$=\sqrt{\frac{1-\sin\theta}{1+\sin\theta}}$$
 (½ mark)

$$= \sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}} \times \frac{1 - \sin \theta}{1 - \sin \theta} \qquad (\frac{1}{2} \text{ mark})$$

$$= \frac{1 \sin \theta}{\sqrt{1 - \sin^2 \theta}} \qquad (\frac{1}{2} \operatorname{mark})$$

$$=\frac{1-\sin\theta}{\sqrt{\cos^2\theta}}$$
 (½ mark)

$$=\frac{1-\sin\theta}{\cos\theta}$$
 (½ mark)
= R.H.S.

20.
$$\frac{3}{x} + \frac{4}{y} = 1$$
 ...(1) (½ mark)
 $\frac{4}{x} + \frac{2}{y} = \frac{11}{12}$...(2) (½ mark)

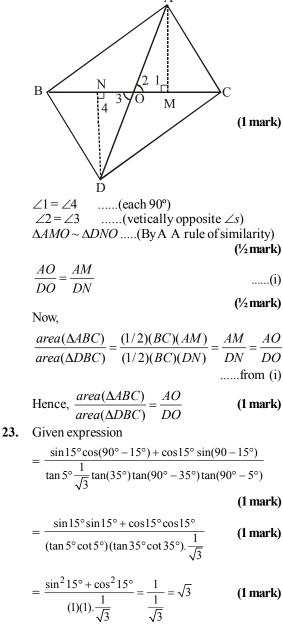
Multiplying (2) by
$$2 \Rightarrow \frac{8}{x} + \frac{4}{y} = \frac{22}{12}$$
 ...(3)
(½ mark)

Subtracting (1) and (3)
$$\Rightarrow \frac{5}{x} = \frac{10}{12}$$

$$\therefore x = \frac{5 \times 12}{10} = 6$$
 (½ mark)
Substituting x = 6 in (1)

$$\Rightarrow \frac{3}{6} + \frac{4}{y} = 1$$

$$\Rightarrow \frac{4}{y} = 1 - \frac{1}{2} = \frac{1}{2}$$
 (1/2 mark)
$$\therefore y = 8 \text{ Hence, } x = 6 \text{ and } y = 8$$
 (1/2 mark)


21. Less than ogive and more than ogive intersect each other at the point (x = 18, y = 30). (1 mark) Also, n = 60

 \Rightarrow

$$\frac{n}{2} = 30 \qquad (\frac{1}{2} \text{ mark})$$

 $\Rightarrow \text{ The middle most value is 30th } (\frac{1}{2} \text{ mark})$ Thus, corresponding to y = 30, we have x = 18. Hence, median = 18 marks. (1 mark)

22. Draw
$$AM \perp BC$$
, $DN \perp BC \ln \Delta AMO$ and ΔDNO ,

Class	Frequency	Midvalue	$(f_i \times x_i)$
interval	$f_{ m i}$	X i	
0 - 10	5	5	25
10 - 20	18	15	270
20 - 30	15	25	375
30 - 40	р	35	35p
40 - 50	6	45	270
	$\Sigma f_i = (44 + p)$		$\Sigma (f_i \times x_i) = (940 + 35p)$

(½ mark)

$$\therefore \quad \text{Mean, } \overline{x} = \frac{\sum (f_i \times x_i)}{\sum f_i}$$
 (½ mark)

$$\Rightarrow \quad \frac{(940+35p)}{(44+p)} = 25 \qquad (\frac{1}{2} \text{ mark})$$

 $\Rightarrow (940+35p)=25(44+p)$

Hence, p = 16

 $\Rightarrow (35p-25p)=(1100-940) \qquad (1/2 \text{ mark})$ $\Rightarrow 10p=160 \Rightarrow p=16$

(½ mark)

Since the graph of the given polynomial intersects X-axis at x = -2, 0 and 2. Therefore, zeroes of the given cubic polynomial are -2, 0 and 2. ($\frac{1}{2}$ mark)

Xi	$\mathbf{f_i}$	$u_i = \frac{x_i - A}{h}$	fiui
10	7	- 2	- 14
30	8	- 1	- 8
50	12	0	0
70	10	1	10
90	8	2	16
110	5	3	15
	$\Sigma f_i = 50$		$\sum f_i u_i = 19$

(1 mark) Here,
$$A = 50, h = 20$$

$$\sum f_i = 50$$
 , $\sum f_i u_i = 19$ (½ mark)

Mean
$$\left(\overline{\mathbf{x}}\right) = \mathbf{A} + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times \mathbf{h}$$
 (1/2 mark)

$$\overline{x} = 50 + \frac{19}{50} \times 20$$
 (½ mark)

$$\bar{x} = 57.6$$
 (½ mark)

SECTION – D

DIRECTIONS: *Question number 25 to 34 carry 4 marks each.*

25. Let us assume, to the contrary, that $\sqrt{2}$ is rational. (1/2 mark)

So, we can find integers r and $s \neq 0$ such that

$$\sqrt{2} = \frac{r}{s}$$
. (½ mark)
Suppose r and s have a common factor other

than 1. Then, we divide by the common factor to

get $\sqrt{2} = \frac{a}{b}$, where *a* and *b* are co-prime.

So, $b\sqrt{2} = a$ $(\frac{1}{2} mark)$ Squaring on both sides and rearranging, we get $2b^2 = a^2$. Therefore, 2 divides a^2 . Now, by it tonows that 2 divides *a*. ($\frac{1}{2}$ mark) If p be a prime number and divides a^2 , then p also divides a if a is a positive integer. So, we can write a = 2c for some integer c. Substituting for a, we get $2b^2 = 4c^2$, that is, $b^2 = 2c^2$. $(\frac{1}{2} mark)$ This means that 2 divides b^2 , and so 2 divides bTherefore, a and b have at least 2 as a common factor. (1/2 mark) But this contradicts the fact that a and b have no common factors other than 1. (1/2 mark) This contradiction, has arisen because of our incorrect assumption that $\sqrt{2}$ is rational.

(1/2 mark)

So, we conclude that $\sqrt{2}$ is irrational.

26. Let the cost price of the table be $\overline{\mathbf{x}}$ and the cost price of the chair be $\overline{\mathbf{x}}$ y.

The selling price of the table, when it is sold at a profit of 10%

$$= \mathbf{E} \left(x + \frac{10}{100} x \right) = \mathbf{E} \frac{110}{100} x \qquad (1/2 \text{ mark})$$

The selling price of the chair when it is sold at a profit of 25%

=₹
$$\left(y + \frac{25}{100}y\right)$$
 =₹ $\frac{125}{100}y$ (½ mark)

So, $\frac{110}{100}x + \frac{125}{100}y = 1050$...(1) (¹/₂ mark) When the table is sold at a profit of 25 %, its

selling price = $\overline{\mathbf{x}} \left(x + \frac{25}{100} x \right) = \overline{\mathbf{x}} \frac{125}{100} x$ When the chair is sold at a profit of 10%, its selling price = $\overline{\mathbf{x}} \left(y + \frac{10}{100} y \right) = \overline{\mathbf{x}} \frac{110}{100} y$ (½ mark) So, $\frac{125}{100}x + \frac{110}{100}y = 1065$...(2) (¹/₂ mark) From equations (1) and (2), we get 110x + 125y = 105000and 125x + 110y = 106500(1/2 mark) On adding and subtracting these equations, we get 235x + 235y = 211500and 15x - 15y = 1500i.e. x + y = 900...(3) and x - y = 100...(4) Solving Equations (3) and (4), we get (1/2 mark) x = 500, y = 400So, the cost price of the table is ₹ 500 and the cost price of the chair is $\gtrless 400$. (1/2 mark)

27. LHS =
$$\frac{\tan\theta}{1-\cot\theta} + \frac{\cot\theta}{1-\tan\theta} = \frac{\tan\theta}{1-\frac{1}{\tan\theta}} - \frac{\cot\theta}{\tan\theta-1}$$

(½ mark)

$$= \frac{\tan^2 \theta}{\tan \theta - 1} - \frac{\cot \theta}{\tan \theta - 1} = \frac{\tan^2 \theta - \cot \theta}{\tan \theta - 1} \qquad (\frac{1}{2} \operatorname{mark})$$

$$=\frac{\tan^2\theta-\frac{1}{\tan\theta}}{\tan\theta-1}=\frac{\tan^3\theta-1}{\tan\theta(\tan\theta-1)}$$
 (½ mark)

$$=\frac{(\tan\theta-1)(\tan^2\theta+1+\tan\theta)}{\tan\theta(\tan\theta-1)}=\frac{\tan^2\theta+1+\tan\theta}{\tan\theta}$$

(1 mark)

$$= \frac{(1 + \tan^2 \theta) + \tan \theta}{\tan \theta} = \frac{\sec^2 \theta + \tan \theta}{\tan \theta} \qquad (\frac{1}{2} \text{ mark})$$

$$= \frac{\sec^2 \theta}{\tan \theta} + \frac{\tan \theta}{\tan \theta} = \frac{\sec^2 \theta \cdot \cos \theta}{\sin \theta} + 1 \qquad (\frac{1}{2} \text{ mark})$$
$$= \sec \theta, \csc \theta + 1 = R.H.S. \qquad (\frac{1}{2} \text{ mark})$$

Class intervals	Frequency	Cumulative frequency
135 - 140	4	4
140 - 145	7	11
145 - 150	18	29
150 - 155	11	40
155 - 160	6	46
160 - 165	5	51

(½ mark)

Here,
$$n = 51$$
. So, $\frac{n}{2} = \frac{51}{2} = 25.5$. This

observation lies in the class 145 - 150. Then, l (the lower limit) = 145, ($\frac{1}{2}$ mark) c.f (the cumulative frequency of the class preceding 140 - 145 = 11

140-145 = 11, (1/2 mark) f (the frequency of the median class 145-150) = 18,

$$h$$
 (the class size) = 5. ($\frac{1}{2}$ mark)
Using the formula, Median

$$= l + \left(\frac{\frac{n}{2} - c.f}{f}\right) \times h = 149.03$$
 (½ mark)

This means that the height of 50% girls is less than the height 149.03 cm and 50% are taller than the height 149.03 cm. (1 mark) We have,

3

6

4

0

2x + y = 8 y = 8 - 2x $x \quad 1 \quad 2$ $y \quad 6 \quad 4$ and

$$3x - 2y = 12$$
$$2y = 3x - 12$$

29.

$$v = \frac{3x - 12}{2}$$

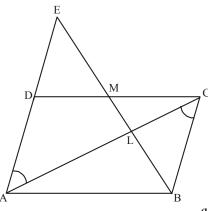
H(0, 8) 9 H(0, 8) 9 7 66 A(1, 6) 5 4 B(2, 4) 3 2 C(3, 2) G(6, 3) 1 D(4, 0) -2 -3 C(2, -3) -5 -5 -6 F (0, -6) -7 -8 -9-

10

-

(½ mark)

8


-8

(½ mark)

From the graph of the two equations, the two lines intersect each other at the point D(4, 0). Hence both criminals will pass through the point D(4, 0) on the *x*-axis. Hence police party should stay at D(0, 4) to arrest the criminals. ($\frac{1}{2}$ mark) Further the criminals in stolen car will pass through H(0, 8) and on the motor cycle through the point F(0, -6). ($\frac{1}{2}$ mark) Additional police should be posted at H and F on *y*-axis to arrest the criminals if they escape luckily at D. (1 mark)

30. In Δ 's *BMC* and *EMD*, we have

 $(\frac{1}{2} \text{ mark})$

31.

 $\angle BMC = \angle EMD$ [Vertically opposite angles] $MC = MD \quad [\because M \text{ is the mid-point of } CD]$ $\angle MBC = \angle DEM \qquad [Alternate angles]$ (1 mark) So, by AAS-congruence criterion, we have $\Delta BMC \cong \Delta EMD$

BC = ED [∴ Corresponding parts of congruent triangles are equal] In Δ 's AEL and CBL, we have $\angle ALE = \angle CLB$

[Vertically opposite angles]

$$\angle EAL = \angle BCL$$
 [Alternate angles]
(1 mark)
by AA-criterion of similarity, we have

So, by AA-criterion of similarity, we have $\Delta AEL \sim \Delta CBL$

$$\Rightarrow \quad \frac{AE}{BC} = \frac{EL}{BL} = \frac{AL}{CL} \qquad (\frac{1}{2} \text{ mark})$$

Taking first two terms, we get

$$\frac{EL}{BL} = \frac{AE}{BC} = \frac{AD + DE}{BC} = \frac{BC + DE}{BC} = \frac{2BC}{BC} = 2$$

$$\implies EL = 2BL.$$
(½ mark)
(½ mark)

We have,

$$\frac{XP}{PY} = \frac{XQ}{QZ}$$
∴ PQ || YZ [By converse of BPT]
∴ ∠XPQ = ∠XYZ [Corresponding angles]
∠X = ∠X [Common] (1 mark)
∴ ΔXPQ □ ΔXYZ [By AA Similarity]

$$\Rightarrow \frac{\operatorname{area}(\Delta XPQ)}{\operatorname{area}(\Delta XYZ)} = \frac{(XP)^2}{(XY)^2} = \frac{(XQ)^2}{(XZ)^2} = \frac{(PQ)^2}{(YZ)^2} \dots (1)$$
(½ mark)

[... The ratio of the areas of two similar triangles is equal to the ratio of squares of their corresponding sides]

Now,
$$\frac{XP}{PY} = \frac{XQ}{QZ} = \frac{3}{1}$$
 (given)

$$\Rightarrow \frac{PY}{XP} = \frac{QZ}{XQ} = \frac{1}{3}$$

$$\Rightarrow \frac{PY}{XP} + 1 = \frac{QZ}{XQ} + 1 = \frac{1}{3} + 1$$
 (½ mark)

$$\Rightarrow \frac{PY + XP}{XP} = \frac{QZ + XQ}{XQ} = \frac{4}{3}$$

$$\Rightarrow \frac{XY}{XP} = \frac{XZ}{XQ} = \frac{4}{3}$$
 (½ mark)
From (1) and (2), we have

$$\frac{\text{area} (\Delta XPQ)}{\text{area} (\Delta XYZ)} = \frac{(XP)^2}{(XY)^2} = \frac{(3)^2}{(4)^2} = \frac{9}{16}$$
 (½ mark)

$$\Rightarrow \text{ area} (\Delta XPQ) = \frac{9}{16} \times \text{ area} (\Delta XYZ)$$

$$= \frac{9}{16} \times 32 \qquad [\because \text{ area} \Delta XYZ = 32 \text{ cm}^2]$$

$$= 18 \text{ cm}^2 \qquad (½ \text{ mark})$$

$$\Rightarrow \text{ area} (quad. PYZQ)$$

$$= area ((\Delta XPZ) - area ((\Delta XPQ)) = \frac{32 - 18}{14} \text{ cm}^2$$
 (½ mark)
We have,

$$\sec \theta = x + \frac{1}{4x}$$

$$\therefore \tan^2 \theta = \sec^2 \theta - 1$$

$$\therefore \quad \tan^2 \theta = \sec^2 \theta - 1$$
$$\Rightarrow \quad \tan^2 \theta = \left(x + \frac{1}{4x}\right)^2 - 1$$
$$(\frac{1}{2} \text{ mark})$$

$$\Rightarrow \tan^{2}\theta = x^{2} + \frac{1}{16x^{2}} + \frac{1}{2} - 1 \qquad (1/2) \text{ mark})$$

$$\Rightarrow \tan^{2}\theta = x^{2} + \frac{1}{16x^{2}} - \frac{1}{2} \qquad 32.$$

$$\Rightarrow \tan^{2}\theta = \left(x - \frac{1}{4x}\right)^{2} \qquad (1/2) \text{ mark}) \qquad 32.$$

$$\Rightarrow \tan^{2}\theta = \left(x - \frac{1}{4x}\right) \qquad (1/2) \text{ mark})$$

$$\Rightarrow \tan^{2}\theta = \left(x - \frac{1}{4x}\right) \text{ or, } \tan^{2}\theta = -\left(x - \frac{1}{4x}\right) \qquad (1/2) \text{ mark})$$

$$\Rightarrow \tan^{2}\theta = \left(x - \frac{1}{4x}\right) \text{ or, } \tan^{2}\theta = -\left(x - \frac{1}{4x}\right) \qquad (1/2) \text{ mark})$$
When $\tan^{2}\theta = \left(x - \frac{1}{4x}\right) + \left(x - \frac{1}{4x}\right) = 2x \qquad (1/2) \text{ mark})$
When $\tan^{2}\theta = \left(x - \frac{1}{4x}\right) + \left(x - \frac{1}{4x}\right) = 2x \qquad (1/2) \text{ mark})$
When, $\tan^{2}\theta = -\left(x - \frac{1}{4x}\right)$, we have
$$\Rightarrow \sec^{2}\theta + \tan^{2}\theta = \left(x - \frac{1}{4x}\right), \text{ we have}$$

$$\Rightarrow \sec^{2}\theta + \tan^{2}\theta = 2x \quad \text{or } \frac{1}{2x} \qquad (1/2) \text{ mark})$$
Hence, $\sec^{2}\theta + \tan^{2}\theta = 2x \quad \text{or } \frac{1}{2x} \qquad (1/2) \text{ mark})$
We have,
 $\text{LHS} = (m^{2} + n^{2}) \cos^{2}\beta$

$$\Rightarrow \text{LHS} = \left(\frac{\cos^{2}\alpha}{\cos^{2}\beta} + \frac{\cos^{2}\alpha}{\sin^{2}\beta}\right) \cos^{2}\beta \qquad (1/2) \text{ mark})$$

$$\Rightarrow \text{LHS} = \left(\frac{\cos^{2}\alpha \sin^{2}\beta + \cos^{2}\alpha}{\cos^{2}\beta \sin^{2}\beta}\right) \cos^{2}\beta$$

$$= 1 \text{HS} = \left(\frac{\cos^{2}\alpha \sin^{2}\beta + \cos^{2}\beta}{\cos^{2}\beta \sin^{2}\beta}\right) \cos^{2}\beta$$

$$= 1 \text{HS} = \cos^{2}\alpha \left(\frac{\sin^{2}\beta + \cos^{2}\beta}{\cos^{2}\beta \sin^{2}\beta}\right) \cos^{2}\beta$$

$$= 1 \text{HS} = \cos^{2}\alpha \left(\frac{\sin^{2}\beta + \cos^{2}\beta}{\cos^{2}\beta \sin^{2}\beta}\right) \cos^{2}\beta$$

$$= 1 \text{HS} = \cos^{2}\alpha \left(\frac{1}{\cos^{2}\beta \sin^{2}\beta}\right) \cos^{2}\beta$$

 $=\left(\frac{\cos\alpha}{\sin\beta}\right)^2$ (1/2 mark) $= n^2 = \text{RHS}$ Hence $(m^2 + n^2) \cos^2 \beta = n^2$ (1/2 mark) (1/2 mark) Given : A right-angled triangle ABC in which $\angle B = 90^{\circ}$ **To Prove :** $AC^2 = AB^2 + BC^2$ **Construction :** From *B* draw $BD \perp AC$. ($\frac{1}{2}$ mark) **Proof :** In triangles *ADB* and *ABC*, we have $\angle ADB = \angle ABC$ [Each equal to 90°] and, $\angle A = \angle A$ [Common] D R $\Delta ADB \sim \Delta ABC$ [AA-similarity criterion] \Rightarrow (1/2 mark) $\frac{AD}{AB} = \frac{AB}{AC}$ \Rightarrow [: In similar triangles corresponding sides are proportional] $(\frac{1}{2} mark)$ $\Rightarrow AB^2 = AD \times AC$...(1) (1/2 mark) In triangles BDC and ABC, we have [Each equal to 90°] $\angle CDB = \angle ABC$ and $\angle C = \angle C$ [Common] $\Rightarrow \Delta BDC \sim \Delta ABC$ [AA-similarity criterion] (1/2 mark)

$$\Rightarrow \quad \frac{DC}{BC} = \frac{BC}{AC}$$

[:: In similar triangles corresponding sides are proportional]

 $\Rightarrow BC^{2} = AC \times DC \qquad ...(2) \quad (\frac{1}{2} \text{ mark})$ Adding equations (i) and (ii), we get $AB^{2} + BC^{2} = AD \times AC + AC \times DC$ $= AC(AD + DC) = AC \times AC = AC^{2}$ Hence, $AC^{2} = AB^{2} + BC^{2}$ Proved. ($\frac{1}{2}$ mark)

33. Two zeroes are $\sqrt{2}$ and $-\sqrt{2}$

Now, $(x - \sqrt{2}), (x + \sqrt{2}) = x^2 - 2$, is a factor of the given polynomial. (1/2 mark)

Now, we divide the given polynomial by $x^2 - 2$				
$\begin{array}{r} 2x^2 - 3x + 1 \\ x^2 - 2 \overline{\smash{\big)}\begin{array}{2} 2x^4 - 3x^3 - 3x^2 + 6x - 2 \\ 2x^4 - 4x^2 \end{array}} \end{array}$				
$\frac{x^{2} - 2x^{2} - 3x^{2} - 3x^{2} - 3x^{2} + 6x - 2}{-4x^{2} - 4x^{2} - $				
$-3x^3 + 6x$				
+ –				
$x^2 - 2$				
$x^2 - 2$				
- + 0				
(1 mark)				
(First term of quotient is $\frac{2x^4}{x^2} = 2x^2$)				
(Second term of quotient is $\frac{-3x^3}{x^2} = -3x$)				
(Third term of quotient is $\frac{x^2}{x^2} = 1$) (1/2 mark)				
So, $2x^4 - 3x^3 - 3x^2 + 6x - 2$				
$= (x^2 - 2) (2x^2 - 3x + 1).$				
Now, by splitting $-3x$, we factorise $2x^2 - 3x + 1$ as $(2x-1)(x-1)$. (1 mark)				
So, the remaining two zero(es) are given by $x = \frac{1}{2}$				
and $x = 1$. Therefore, the zero(es) of the given				
polynomial are $\sqrt{2}, -\sqrt{2}, \frac{1}{2}$ and 1. (1 mark)				
$\mathbf{A} = \mathbf{D} + \mathbf{C} + $				

34. By selecting classes for the given data as 0 − 10, 10 − 20, 20 − 30, 30 − 40, 40 − 50, 50 − 60, 60 − 70, 70 − 80, 80 − 90, 90 − 100, we write the frequency distribution as below: (¹/₂ mark)

Marks	Number of students f _i
0 -10	80 - 77 = 3
10 - 20	77 - 72 = 5
20 - 30	72 - 65 = 7
30 - 40	65 - 55 = 10
40 - 50	55 - 43 = 12
50 - 60	43 - 28 = 15
60 - 70	28 - 16 = 12
70 - 80	16 - 10 = 6
80 - 90	10 - 8 = 2
90 - 100	8 - 0 = 8
Total	n = 80

Note that in the given table there are 80 students who are getting marks 0 and above but 77 students are getting marks 10 and above. Therefore, the number of students getting marks 0 - 10, i.e., 0 and above but less than 10 = 80 - 77 = 3.

Similarly, there are 77 students getting marks 10 and above but 72 students are getting marks 20 and above. Therefore, the number of students getting marks 10-20 are equal to 77-72=5 and so on. (1/2 mark)

Let us apply step-deviation method: y = 5 y = 15 y = 25 y = 25 y

$$x_1 = 5, x_2 = 15, x_3 = 25, x_4 = 35, x_5 = 45,$$

 $x_6 = 55, x_7 = 65, x_8 = 75, x_9 = 85, x_{10} = 95.$
(½ mark)

We select a = 55 and h = 10.

Writting,
$$u_i = \frac{x_i - 55}{10}$$
, we make the following table: (1/2 mark)

Class marks	Frequency (Number of students) <i>f</i> _i	Class mark x _i	$u_i = \frac{x_i - 55}{10}$	$f_i \times u_i$
0 - 10	3	5	-5	-15
10 - 20	5	15	-4	-20
20 - 30	7	25	-3	-21
30 - 40	10	35	-2	-20
40 - 50	12	45	-1	-12
50 - 60	15	55	0	0
60 - 70	12	65	1	12
70 - 80	6	75	2	12
80 - 90	2	85	3	6
90 - 100	8	95	4	32
Total	n = 80			-26

(1/2 mark)

From the table, we have

-

$$n = \sum f_i = 80 \text{ and } \sum f_i u_i = -26$$

By step-deviation method, the average marks of a student are given by

$$\overline{x} = a + h \times \frac{1}{n} \times \sum f_i u_i = 55 + 10 \times \frac{1}{80} \times (-26)$$
(1/2 mark)

$$= 55 - \frac{26}{8} = 55 - 3.25 = 51.75 \qquad (\frac{1}{2} \text{ mark})$$